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In a previous paper, ! the authors gave the first b
exact solution of the nonlinearized Boltzmann trans-
port equation for particles with a linear dispersion

. . X . | 4
law (e.g., phonons) subject to point scattering in k2 "
an infinite slab. The two faces of the slab were in
contact with two heat reservoirs at different tem- |
peratures, and from the knowledge of the phonon v 4 1
distribution function, the temperature distribution P
in the slab and the thermal conductivity were derived
as a function of all pertinent parameters. These
were the temperature, the scattering cross section,
the impurity concentration, the slab thickness, and
the sound velocity. Hence, one had a model of heat
transport in insulators at low temperatures. The
results were compared with experimental data ob-
tained on specimens of prismoidal and cylindrical
shapes, and good agreement was found despite the v
fact that an infinite slab is geometrically very dif- X
ferent from either a prism or a cylinder.

It is the purpose of the present comment to show
that the solution given in the cited paper is valid
not only for the infinite slab, but also for a straight
prism or cylinder of any cross section and of finite
length, provided that the phonons are specularly
reflected at the side walls.

First, a heuristic argument: Suppose that people
with identical features are milling around in a room

of infinite extension on all four sides. Among them FIG. 1. Projections of a cylinder of arbitrary cross

is the reader as an observer. Now mirror walls section inscribed into the infinite slab. Bottom: Projection
perpendicular to the floor are erected around the on the x-y plane. Top: Projection on the y-z plane. The
observer, making him a member of a sufficiently slab rests on the x-y plane, and is topped by the plane b.
large crowd enclosed in the prismatic room so One and two primes denote the x-y and y-z projections of

. the labeled quantities, respectively. The incident phonon
created. Can the observer tell by looking around, wave vector is k;, the reflected wave vector is 1?2 at the

whether he‘ 1s~ in ‘th‘e finite room or in the infinite point P. The tangential plane at P is ¢, the normal vec-
room? It is intuitively clear that he cannot tell tor is i. The figure shows that only the azimuthal angle
the difference as long as the dimensions of the en- ¢, and not the polar angle 6, is changed in the reflection.
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closure are large compared with his own dimen-
sions. The phonons are in an analogous situation.

To obtain a formal proof, consider a cylinder
inscribed into the slab as shown from the side and
from the top in Fig. 1. The vectors El and Ea rep-
resent the quasi-momenta of a phonon incident and
specularly reflected from the wall. As shown in
Ref. 1, the phonon distribution function f(k, X) of
the stationary, but because of the heat flow, non-
equilibrium system has axial symmetry with re-
spect to any line perpendicular to the slab faces.
This means that at the point “A” we have

f(Ely ;):f(k, g, SE)=.f(l"£2’ E)

because f is independent of ¢, and 2 and 6 do not
change in specular reflection.
Consequently, the distribution function found for
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the infinite slab fulfills the boundary conditions of
specular reflection on the walls of the cylinder or
prism, as well as the Boltzmann equation. Hence,
it is the solution of the problem in question. It is
further evident that the distribution function is in-
variant with respect to the introduction of any kind
of specularly reflecting walls as long as they are
perpendicular to the slab boundaries.

It should be noted that the distribution function,
and therefore the conductivity, is independent of
the cross-sectional dimensions of the sample. This
is not true if the reflection is diffuse rather than
specular, or if there is radiative or conductive loss
of heat through the walls. We expect therefore,
the theory to hold best for highly polished samples.

Our thanks are due to J. M. Robinson, Dr. J.
Mennig, and Dr. T. Auerbach for discussions on
the subject and to the Sektion Physik, Universitit
Miinchen, for its hospitality.
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A simple model for the application of the Hellmann-Feynman theorem to the equilibrium

condition for a solid is discussed.

Some concern over the accuracy of charge den-
sities of solids calculated from Bloch functions has
been raised by an article of Wannier et al.' Using
the Hellmann-Feynman theorem, they found a re-
lationship between the charge distribution in a unit
cell of a periodic crystal and the equilibrium condi-
tion for the crystal, which had explosive conse-
quences for “nearly free-electron” metals. How-
ever, Kleinman® has considered in detail the electro-
statics involved in determining the force acting on
a nucleus in a large finite crystal and has concluded
that one must take into account the electronic charge
density and the nuclei near the surface. The plaus-
ibility of Kleinman’s conclusion has been questioned
on the grounds that it is unusual to expect surface
effects to play an important role in the determina-
tion of a bulk quantity such as the equilibrium lat-
tice constant.® The purpose of this paper is to show
explicitly for a simple model that the equilibrium
condition is determined by a surface effect.

Let us consider a classical system of N +1 bodies
at positions x, =an, n=0,1,2, ..., N, each joined

to its nearest neighbors by springs with spring con-
stant K and rest length a,. The potential energy of
the system is then U(a)= 3NK(a - a,)?, so that
dU/da=NK(a - a,). Theanalog of the Hellmann- Feyn-
man theorem for this systemisdU= -7, F,dx, where
F, is the force on the nth body produced by the

rest of the system. Considering the case of uni-
form strain, dx,=nda, we see that dx,=0 and
F,=0for 1 sn<N-1 since these bodies experience
equal and opposite forces from the identically
strained springs on either side. Therefore, we
have from the Hellmann- Feynman theorem

(D’ Alembert’s principle?) dU =~ Fydxy=k(a - a,)

X Nda so that dU/da is obtained exactly in this case
from the force on the body at the end of the chain.
This argument is easily generalized to three dimen-
sions, establishing the role of the surface in the
equilibrium condition.

By introducing springs joining second neighbors
in the chain, we can easily produce a model for the
variation of the lattice constant close to the surface,
analogous to that described in Kleinman’s paper. 2



